See Google Scholar for Citations of papers
2025
[77] The tale of mitochondria and mitochondria-associated ER membrane in patient-derived neuronal models of Wolfram syndrome.
Aubry L.†, Barrett T.† and Sarkar S.†
Neural Regeneration Research 20(9): 2587-2588 (2025). †Corresponding author
Aubry L.†, Barrett T.† and Sarkar S.†
Neural Regeneration Research 20(9): 2587-2588 (2025). †Corresponding author
2024
[76] Targeting the autophagy-NAD axis protects against cell death in Niemann-Pick type C1 disease models.
Kataura T.*†, Sedlackova L.*, Sun C., Kocak G., Wilson N., Banks P., Hayat F., Trushin S., Trushina E., Maddocks O.D.K., Oblong J.E., Miwa S., Imoto M., Saiki S., Erskine D., Migaud M.E., Sarkar S.† and Korolchuk V.I.†
Cell Death and Disease 15(5): 382 (2024) [PMID: 38821960]. *Equal contribution; †Corresponding author
Kataura T.*†, Sedlackova L.*, Sun C., Kocak G., Wilson N., Banks P., Hayat F., Trushin S., Trushina E., Maddocks O.D.K., Oblong J.E., Miwa S., Imoto M., Saiki S., Erskine D., Migaud M.E., Sarkar S.† and Korolchuk V.I.†
Cell Death and Disease 15(5): 382 (2024) [PMID: 38821960]. *Equal contribution; †Corresponding author
[75] The glutamate/aspartate transporter EAAT1 is crucial for T-cell acute lymphoblastic leukemia proliferation and survival.
Stanulovic V.S., Omar S.A., Reed M.A.C., Roberts J., Potluri S., Fulton-Ward T., Gudgeon N., Bishop E.L., Roels J., Perry T.A., Sarkar S., Pratt G., Taghon T., Dimeloe S., Gunther U.L., Ludwig C. and Hoogenkamp M.
Haematologica DOI: 10.3324/haematol.2023.283471 (2024) [PMID: 38813748].
Stanulovic V.S., Omar S.A., Reed M.A.C., Roberts J., Potluri S., Fulton-Ward T., Gudgeon N., Bishop E.L., Roels J., Perry T.A., Sarkar S., Pratt G., Taghon T., Dimeloe S., Gunther U.L., Ludwig C. and Hoogenkamp M.
Haematologica DOI: 10.3324/haematol.2023.283471 (2024) [PMID: 38813748].
2023
[74] NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency.
Sun C.*, Seranova E.*, Cohen M.A.*, Chipara M., Roberts J., Astuti D., Palhegyi A.M., Acharjee A., Sedlackova L., Kataura T., Otten E.G., Panda P.K., Reyna S.L., Korsgen M.E., Kauffman K.J., Huerta-Uribe A., Zatyka M., Silva L.F.S.E., Torresi J., Zhang S., Hughes G.W., Ward C., Kuechler E.R., Cartwright D., Trushin S., Trushina E., Sahay G., Buganim Y., Lavery G.G., Gsponer J., Anderson D.G., Frickel E.M., Rosenstock T.R., Barrett T., Maddocks O.D.K., Tennant D.A., Wang H., Jaenisch R., Korolchuk V.I.† and Sarkar S.†
Cell Reports 42(5): 112372 (2023) [PMID: 37086404]. *Equal contribution; †Corresponding author
Features:
New insights into the autophagy-NAD axis in brain disease. Cell Reports 42(5): 112420 (20 April 2023) [Preview].
Brain cells are starved of energy in autophagy dysfunction, new study finds. EurekAlert! (27 April 2023) [News].
Brain cells are starved of energy in autophagy dysfunction, new study finds. Phys.Org (27 April 2023) [News].
Brain cells are starved of energy when autophagy malfunctions, new study finds. University of Birmingham (28 April 2023) [News].
How brain cells are starved of energy in autophagy dysfunction. The Print (30 April 2023) [News].
Brain cells are starved of energy when autophagy malfunctions, new study finds. Gates Cambridge (02 May 2023) [News].
Sun C.*, Seranova E.*, Cohen M.A.*, Chipara M., Roberts J., Astuti D., Palhegyi A.M., Acharjee A., Sedlackova L., Kataura T., Otten E.G., Panda P.K., Reyna S.L., Korsgen M.E., Kauffman K.J., Huerta-Uribe A., Zatyka M., Silva L.F.S.E., Torresi J., Zhang S., Hughes G.W., Ward C., Kuechler E.R., Cartwright D., Trushin S., Trushina E., Sahay G., Buganim Y., Lavery G.G., Gsponer J., Anderson D.G., Frickel E.M., Rosenstock T.R., Barrett T., Maddocks O.D.K., Tennant D.A., Wang H., Jaenisch R., Korolchuk V.I.† and Sarkar S.†
Cell Reports 42(5): 112372 (2023) [PMID: 37086404]. *Equal contribution; †Corresponding author
Features:
New insights into the autophagy-NAD axis in brain disease. Cell Reports 42(5): 112420 (20 April 2023) [Preview].
Brain cells are starved of energy in autophagy dysfunction, new study finds. EurekAlert! (27 April 2023) [News].
Brain cells are starved of energy in autophagy dysfunction, new study finds. Phys.Org (27 April 2023) [News].
Brain cells are starved of energy when autophagy malfunctions, new study finds. University of Birmingham (28 April 2023) [News].
How brain cells are starved of energy in autophagy dysfunction. The Print (30 April 2023) [News].
Brain cells are starved of energy when autophagy malfunctions, new study finds. Gates Cambridge (02 May 2023) [News].
[73] Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome.
Zatyka M.*, Rosenstock T.R.*, Sun C., Palhegyi A.M., Hughes G.W., Reyna S.L., Astuti D., Maio A.D., Sciauvaud A., Korsgen M.E., Stanulovic V., Kocak G., Rak M., Pourtoy-Brasselet S., Winter K., Varga T., Jarrige M., Polveche H., Correia J., Frickel E.M., Hoogenkamp M., Ward D.G., Aubry L., Barrett T. and Sarkar S.† Stem Cell Reports 18(5): 1090-1106 (2023) [PMID: 37163979]. *Equal contribution; †Corresponding author Feature: Brain cell death in rare disease Wolfram syndrome linked to mitochondrial defects. University of Birmingham (17 May 2023) [News]. Research finds brain cell death in rare disease Wolfram syndrome linked to mitochondrial defects. India Education Diary (22 May 2023) [News]. [72] Analysis of autophagy deficiency and cytotoxicity in autophagy-deficient human embryonic stem cell-derived neurons.
Korsgen M.E.*, Sun C.*, Seranova E., Zatyka M., Astuti D., Kataura T., Barrett T., Korolchuk V.I.† and Sarkar S.† STAR Protocols 4: 102529 (2023) [PMID: 37624702]. *Equal contribution; †Corresponding author |
[71] The autophagy-NAD axis in longevity and disease.
Wilson N.*, Kataura T.*, Korsgen M.E., Sun C., Sarkar S.† and Korolchuk V.I.†
Trends in Cell Biology 33(9): 788-802 (2023) [PMID: 36878731]. *Equal contribution; †Corresponding authors
Wilson N.*, Kataura T.*, Korsgen M.E., Sun C., Sarkar S.† and Korolchuk V.I.†
Trends in Cell Biology 33(9): 788-802 (2023) [PMID: 36878731]. *Equal contribution; †Corresponding authors
[70] Metabolic function of autophagy is essential for cell survival.
Sedlackova L., Kataura T., Sarkar S. and Korolchuk V.I.
Autophagy 19(8): 2395-2397 (2023) [PMID: 36727253].
Sedlackova L., Kataura T., Sarkar S. and Korolchuk V.I.
Autophagy 19(8): 2395-2397 (2023) [PMID: 36727253].
Pre-prints
A mitochondrial quality control mechanism reverses the phagosome maturation arrest caused by Mycobacterium tuberculosis.
Verma S., Das M., Sharma R.D., Yadav V., Thakur S., Sharma P., Marzuki M., Foo S., Piperno G.M., Khan M.Z., Mathew B., Bajpai M., Maras J.S., Howland S., Sarkar S., Benvenuti F., Singh A., Nandicoori V., Singhal A. and Kumar D.
BioRxiv doi: https://doi.org/10.1101/2023.12.01.569475 (2023).
Verma S., Das M., Sharma R.D., Yadav V., Thakur S., Sharma P., Marzuki M., Foo S., Piperno G.M., Khan M.Z., Mathew B., Bajpai M., Maras J.S., Howland S., Sarkar S., Benvenuti F., Singh A., Nandicoori V., Singhal A. and Kumar D.
BioRxiv doi: https://doi.org/10.1101/2023.12.01.569475 (2023).
2022
[69] Autophagy promotes cell survival by maintaining NAD levels.
Kataura T.*, Sedlackova L.*, Otten E.G., Kumari R., Shapira D., Scialo F., Stefanatos R., Ishikawa K., Kelly G., Seranova E., Sun C., Maetzel D., Kenneth N., Trushin S., Zhang T., Trushina E., Bascom C.C., Tasseff R., Isfort R.J., Oblong J.E., Miwa S., Lazarou M., Jaenisch R., Imoto M., Saiki S., Papamichos-Chronakis M., Manjithaya R., Maddocks O.D.K., Sanz A., Sarkar S.† and Korolchuk V.I.† Developmental Cell 57(22): 2584-2598 (2022) [PMID: 36413951]. *Equal contribution; †Corresponding author Feature: Researchers at the University of Birmingham have identified the molecular basis of metabolic diseases linked to autophagy. Institute of Cancer and Genomic Sciences, University of Birmingham (30 November 2022) [News]. [68] Analysis of mitochondrial dysfunction by microplate reader in hiPSC-derived neuronal cell models of neurodegenerative disorders.
Rosenstock T.R., Sun C., Hughes G.W., Winter K. and Sarkar S.† Methods in Molecular Biology 2549: 1-21 (2022) [PMID: 35347693]. †Corresponding author [67] Autophagy dysfunction as a phenotypic readout in hiPSC-derived neuronal cell models of neurodegenerative diseases.
Sun C.*, Rosenstock T.R.*, Cohen M.A. and Sarkar S.† Methods in Molecular Biology 2549: 103-136 (2022) [PMID: 34490597]. *Equal contribution; †Corresponding author |
2021
[66] Trehalose limits opportunistic mycobacterial survival during HIV co-infection by reversing HIV-mediated autophagy block.
Sharma V., Makhdoomi M., Singh L., Kumar P., Khan N., Singh S., Verma H.N., Luthra K., Sarkar S. and Kumar D.
Autophagy 17(2): 476-495 (2021) [PMID: 32079455].
Sharma V., Makhdoomi M., Singh L., Kumar P., Khan N., Singh S., Verma H.N., Luthra K., Sarkar S. and Kumar D.
Autophagy 17(2): 476-495 (2021) [PMID: 32079455].
[65] Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).
Klionsky D.J. and 2500+ authors including Seranova E. and Sarkar S.
Autophagy 17(1): 1-382 (2021) [PMID: 33634751].
Klionsky D.J. and 2500+ authors including Seranova E. and Sarkar S.
Autophagy 17(1): 1-382 (2021) [PMID: 33634751].
[64] Oxygen consumption evaluation: An important indicator of metabolic state, cellular function, and cell fate along neural deregulation.
Brito M.D., Silva L.F.S.E., Siena A., Chipara M., Sarkar S. and Rosenstock T.R.
Methods in Molecular Biology 2240: 207-230 (2021) [PMID: 33423236].
Brito M.D., Silva L.F.S.E., Siena A., Chipara M., Sarkar S. and Rosenstock T.R.
Methods in Molecular Biology 2240: 207-230 (2021) [PMID: 33423236].
2020
[63] Human induced pluripotent stem cell models of neurodegenerative disorders for studying the biomedical implications of autophagy.
Seranova E.*, Palhegyi A.M.*, Verma S., Dimova S., Lasry R., Naama M., Sun C., Barrett T., Rosenstock T.R., Kumar D., Cohen M.A., Buganim Y. and Sarkar S.† Journal of Molecular Biology 432(8): 2754-2798 (2020) [PMID: 32044344]. *Equal contribution, †Corresponding author [62] Autophagy in rare (non-lysosomal) neurodegenerative diseases.
Zatyka M., Sarkar S. and Barrett T. Journal of Molecular Biology 432(8): 2735-2753 (2020) [PMID: 32087199]. [61] Editorial overview: Autophagy in neurodegenerative diseases.
Korolchuk V.I.†, Sarkar S.† and Fanto M.† Journal of Molecular Biology 432(8): 2445-2448 (2020) [PMID: 32169483]. †Corresponding authors [60] Editorial: Autophagy: From big data to physiological significance.
Sarkar S.†, Vaccaro M.I.† and Nezis I.† Frontiers in Cell and Developmental Biology 7: 376 (2020) [PMID: 31998722]. †Corresponding authors |
[59] Autophagy modulator scoring system: a user-friendly tool for quantitative analysis of methodological integrity of chemical autophagy modulator studies.
Dong Y., Hu Y., Sarkar S., Zong W.X., Li M., Feng D., Song J.X., Li M., Medina D.L., Tan J. Zhang Z., Yue Z. and Lu J.H.
Autophagy 16(2): 195-202 (2020) [PMID: 31841063].
Dong Y., Hu Y., Sarkar S., Zong W.X., Li M., Feng D., Song J.X., Li M., Medina D.L., Tan J. Zhang Z., Yue Z. and Lu J.H.
Autophagy 16(2): 195-202 (2020) [PMID: 31841063].
2019
[58] Chemical screening approaches enabling drug discovery of autophagy modulators for biomedical applications in human diseases.
Panda P.K.*, Fahrner A.*, Vats S., Seranova E., Sharma V., Chipara M., Desai P., Torresi J., Rosenstock T., Kumar D. and Sarkar S.† Frontiers in Cell and Developmental Biology 7: 38 (2019) [PMID: 30949479]. *Equal contribution; †Corresponding author [57] In vitro screening platforms for identifying autophagy modulators in mammalian cells.
Seranova E., Ward C., Chipara M., Rosenstock T.R. and Sarkar S.† Methods in Molecular Biology 1880: 389-428 (2019) [PMID: 30610712]. †Corresponding author [56] Biomedical implications of autophagy in macromolecule storage disorders.
Palhegyi A.M., Seranova E., Dimova S., Hoque S. and Sarkar S.† Frontiers in Cell and Developmental Biology 7: 179 (2019) [PMID: 31555645]. †Corresponding author |
2018
[55] Selective autophagy and xenophagy in infection and disease.
Sharma V., Verma S., Seranova E., Sarkar S. and Kumar D.
Frontiers in Cell and Developmental Biology 6: 147 (2018) [PMID: 30483501].
Sharma V., Verma S., Seranova E., Sarkar S. and Kumar D.
Frontiers in Cell and Developmental Biology 6: 147 (2018) [PMID: 30483501].
2017
[54] Discovery of pan autophagy inhibitors identified by a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across three eukaryotic kingdoms.
Mishra P., Dauphinee A.N., Ward C., Sarkar S., Gunawardena A.H.L.A.N. and Manjithaya R.
Autophagy 13(9): 1556-1572 (2017) [PMID: 28792845].
Mishra P., Dauphinee A.N., Ward C., Sarkar S., Gunawardena A.H.L.A.N. and Manjithaya R.
Autophagy 13(9): 1556-1572 (2017) [PMID: 28792845].
[53] Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle.
Song Z., Moore D.R., Hodson N., Ward C., Dent J.R., O’Leary M.F., Shaw A.M., Hamilton D.L., Sarkar S., Gangloff Y.G., Hornberger T.A., Spriet L.L., Heigenhauser G.J. and Philp A.
Scientific Reports 7(1): 5028 (2017) [PMID: 28694500].
Song Z., Moore D.R., Hodson N., Ward C., Dent J.R., O’Leary M.F., Shaw A.M., Hamilton D.L., Sarkar S., Gangloff Y.G., Hornberger T.A., Spriet L.L., Heigenhauser G.J. and Philp A.
Scientific Reports 7(1): 5028 (2017) [PMID: 28694500].
[52] Dysregulation of autophagy as a common mechanism in lysosomal storage diseases.
Seranova E., Connolly K.J., Zatyka M., Rosenstock T.R., Barrett T., Tuxworth R.I.† and Sarkar S.†
Essays in Biochemistry 61(6): 733-749 (2017) [PMID: 29233882]. †Corresponding author
Seranova E., Connolly K.J., Zatyka M., Rosenstock T.R., Barrett T., Tuxworth R.I.† and Sarkar S.†
Essays in Biochemistry 61(6): 733-749 (2017) [PMID: 29233882]. †Corresponding author
2016
[51] Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.
Carroll B., Maetzel D., Maddocks O.D.K., Otten G., Ratcliff M., Smith G.R., Dunlop E.A., Passos J.F., Davies O.R., Jaenisch R., Tee A.R., Sarkar S. and Korolchuk V.I.
eLife 5: e11058 (2016) [PMID: 26742086].
Carroll B., Maetzel D., Maddocks O.D.K., Otten G., Ratcliff M., Smith G.R., Dunlop E.A., Passos J.F., Davies O.R., Jaenisch R., Tee A.R., Sarkar S. and Korolchuk V.I.
eLife 5: e11058 (2016) [PMID: 26742086].
[50] PEG-lipid micelles enable cholesterol efflux in Niemann-Pick type C1 disease-based lysosomal storage disorder.
Brown A., Patel S., Ward C., Lorenz A., Ortiz M., DuRoss A., Wieghardt F., Esch A., Otten E.G., Heiser L.M., Korolchuk V.I., Sun C., Sarkar S. and Sahay G.
Scientific Reports 6: 31750 (2016) [PMID: 27572704].
Brown A., Patel S., Ward C., Lorenz A., Ortiz M., DuRoss A., Wieghardt F., Esch A., Otten E.G., Heiser L.M., Korolchuk V.I., Sun C., Sarkar S. and Sahay G.
Scientific Reports 6: 31750 (2016) [PMID: 27572704].
[49] Autophagy, lipophagy and lysosomal lipid storage disorders.
Ward C., Martinez-Lopez N., Otten E.G., Carroll B., Maetzel D., Singh R.†, Sarkar S.† and Korolchuk V.I.†
BBA Molecular and Cell Biology of Lipids 1861(4): 269-284 (2016) [PMID: 26778751]. †Corresponding author
Ward C., Martinez-Lopez N., Otten E.G., Carroll B., Maetzel D., Singh R.†, Sarkar S.† and Korolchuk V.I.†
BBA Molecular and Cell Biology of Lipids 1861(4): 269-284 (2016) [PMID: 26778751]. †Corresponding author
[48] Guidelines for the use and interpretation of assays for monitoring autophagy.
Klionsky D.J. and 2500+ authors including Sarkar S.
Autophagy 12(1): 1-222 (2016) [PMID: 26799652].
Klionsky D.J. and 2500+ authors including Sarkar S.
Autophagy 12(1): 1-222 (2016) [PMID: 26799652].
2015
[47] Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics.
Kuo S.Y., Castoreno A.B., Aldrich L.N., Lassen K.G., Goel G., Dančík V., Kuballa P., Latorre I., Conway K.L., Sarkar S., Maetzel D., Jaenisch R., Clemons P.A., Schreiber S.L., Shamji A.F. and Xavier R.J.
Proceedings of the National Academy of Sciences (PNAS), USA 112(31): E4281-E4287 (2015) [PMID: 26195741].
Kuo S.Y., Castoreno A.B., Aldrich L.N., Lassen K.G., Goel G., Dančík V., Kuballa P., Latorre I., Conway K.L., Sarkar S., Maetzel D., Jaenisch R., Clemons P.A., Schreiber S.L., Shamji A.F. and Xavier R.J.
Proceedings of the National Academy of Sciences (PNAS), USA 112(31): E4281-E4287 (2015) [PMID: 26195741].
[46] Amino acids and autophagy: Cross-talk and co-operation to control cellular homeostasis.
Carroll B., Korolchuk V.I.† and Sarkar S.†
Amino Acids 47(10): 2065-2088 (2015) [PMID: 24965527]. †Corresponding author
Carroll B., Korolchuk V.I.† and Sarkar S.†
Amino Acids 47(10): 2065-2088 (2015) [PMID: 24965527]. †Corresponding author
2014
[45] Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick iPS cells.
Maetzel D.*, Sarkar S.*, Wang H.*, Abi-Mosleh L., Xu P., Cheng A.W., Gao Q., Mitalipova M. and Jaenisch R.
Stem Cell Reports 2(6): 866-880 (2014) [PMID: 24936472]. *Equal contribution
Selected Features:
Combination therapy a potential strategy for treating Niemann-Pick disease. Whitehead Institute (15 May 2014) [News].
Combination therapy a potential strategy for treating Niemann-Pick disease. Science Daily (15 May 2014) [News];
Dual approach to genetic disorder. Gates Cambridge (21 May 2014) [News].
Maetzel D.*, Sarkar S.*, Wang H.*, Abi-Mosleh L., Xu P., Cheng A.W., Gao Q., Mitalipova M. and Jaenisch R.
Stem Cell Reports 2(6): 866-880 (2014) [PMID: 24936472]. *Equal contribution
Selected Features:
Combination therapy a potential strategy for treating Niemann-Pick disease. Whitehead Institute (15 May 2014) [News].
Combination therapy a potential strategy for treating Niemann-Pick disease. Science Daily (15 May 2014) [News];
Dual approach to genetic disorder. Gates Cambridge (21 May 2014) [News].
[44] The developmental potential of iPSCs is greatly influenced by reprogramming factor selection.
Buganim Y., Markoulaki S., van Wietmarschen N., Hoke H., Wu T., Ganz K., Akhtar-Zaidi B., He Y., Abraham B.J., Porubsky D., Kulenkampff E., Faddah D.A., Shi L., Gao Q., Sarkar S., Cohen M., Goldmann J., Nery J.R., Schultz M.D., Ecker J.R., Xiao A., Young R.A., Lansdorp P.M. and Jaenisch R.
Cell Stem Cell 15(3): 295-309 (2014) [PMID: 25192464].
Buganim Y., Markoulaki S., van Wietmarschen N., Hoke H., Wu T., Ganz K., Akhtar-Zaidi B., He Y., Abraham B.J., Porubsky D., Kulenkampff E., Faddah D.A., Shi L., Gao Q., Sarkar S., Cohen M., Goldmann J., Nery J.R., Schultz M.D., Ecker J.R., Xiao A., Young R.A., Lansdorp P.M. and Jaenisch R.
Cell Stem Cell 15(3): 295-309 (2014) [PMID: 25192464].
[43] Direct lineage conversion of adult mouse liver cells and B-lymphocytes to neural stem cells.
Cassady J.P., D'Alessio A.C., Sarkar S., Dani V.S., Fan Z.P., Ganz K., Roessler R., Sur M., Young R.A., and Jaenisch R.
Stem Cell Reports 3(6): 948-956 (2014) [PMID: 25454632].
Cassady J.P., D'Alessio A.C., Sarkar S., Dani V.S., Fan Z.P., Ganz K., Roessler R., Sur M., Young R.A., and Jaenisch R.
Stem Cell Reports 3(6): 948-956 (2014) [PMID: 25454632].
[42] N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury.
Zhou H., Wang J., Jiang J., Stavrovskaya I.G., Li M., Li W., Wu Q., Zhang X., Luo C., Zhou S., Sirianni A.C., Sarkar S., Kristal B.S., Friedlander R.M. and Wang X.
Journal of Neuroscience 34(8): 2967-2978 (2014) [PMID: 24553937].
Zhou H., Wang J., Jiang J., Stavrovskaya I.G., Li M., Li W., Wu Q., Zhang X., Luo C., Zhou S., Sirianni A.C., Sarkar S., Kristal B.S., Friedlander R.M. and Wang X.
Journal of Neuroscience 34(8): 2967-2978 (2014) [PMID: 24553937].
[41] Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease.
Sarkar S.†, Maetzel D., Korolchuk V.I. and Jaenisch R.†
Autophagy 10(6): 1137-1140 (2014) [PMID: 24879158]. †Corresponding author
Sarkar S.†, Maetzel D., Korolchuk V.I. and Jaenisch R.†
Autophagy 10(6): 1137-1140 (2014) [PMID: 24879158]. †Corresponding author
2013
[40] Impaired autophagy in the lipid storage disorder Niemann-Pick type C1 disease.
Sarkar S., Carroll B., Buganim Y., Maetzel D., Ng A.H.M., Cassady J.P., Cohen M.A., Chakraborty S., Wang H., Spooner E., Ploegh H., Gsponer J., Korolchuk V.I. and Jaenisch R.
Cell Reports 5(5): 1302-1315 (2013) [PMID: 24290752].
Features:
Restarting stalled autophagy a potential approach to treating Niemann-Pick disease. Whitehead Institute (08 Jan 2014) [News].
New cause of fatal disease discovered. Gates Cambridge (10 Jan 2014) [News].
Poor housekeeping. MRC BPoD (26 Feb 2014) [Image Feature].
Sarkar S., Carroll B., Buganim Y., Maetzel D., Ng A.H.M., Cassady J.P., Cohen M.A., Chakraborty S., Wang H., Spooner E., Ploegh H., Gsponer J., Korolchuk V.I. and Jaenisch R.
Cell Reports 5(5): 1302-1315 (2013) [PMID: 24290752].
Features:
Restarting stalled autophagy a potential approach to treating Niemann-Pick disease. Whitehead Institute (08 Jan 2014) [News].
New cause of fatal disease discovered. Gates Cambridge (10 Jan 2014) [News].
Poor housekeeping. MRC BPoD (26 Feb 2014) [Image Feature].
[39] Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.
Sahay G., Querbes W., Alabi C., Eltoukhy A., Sarkar S., Zurenko C., Karagiannis E., Love K., Chen D., Zoncu R., Buganim Y., Schroeder A., Langer R. and Anderson D.G.
Nature Biotechnology 31(7): 653-658 (2013) [PMID: 23792629].
Sahay G., Querbes W., Alabi C., Eltoukhy A., Sarkar S., Zurenko C., Karagiannis E., Love K., Chen D., Zoncu R., Buganim Y., Schroeder A., Langer R. and Anderson D.G.
Nature Biotechnology 31(7): 653-658 (2013) [PMID: 23792629].
[38] Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: Autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers.
Sarkar S.†
Biochemical Society Transactions 41(5): 1103-1130 (2013) [PMID: 24059496]. †Corresponding author
Sarkar S.†
Biochemical Society Transactions 41(5): 1103-1130 (2013) [PMID: 24059496]. †Corresponding author
[37] Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders.
Sarkar S.†
Drug Discovery Today: Technologies 10(1): e137-e144 (2013) [PMID: 24050242]. †Corresponding author
Sarkar S.†
Drug Discovery Today: Technologies 10(1): e137-e144 (2013) [PMID: 24050242]. †Corresponding author
2012
[36] Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors.
Buganim Y., Itskovich E., Hu Y.C., Cheng A.W., Ganz K., Sarkar S., Fu D., Welstead G.G., Page D.C. and Jaenisch R.
Cell Stem Cell 11(3): 373-386 (2012) [PMID: 22958931].
Buganim Y., Itskovich E., Hu Y.C., Cheng A.W., Ganz K., Sarkar S., Fu D., Welstead G.G., Page D.C. and Jaenisch R.
Cell Stem Cell 11(3): 373-386 (2012) [PMID: 22958931].
[35] Guidelines for the use and interpretation of assays for monitoring autophagy.
Klionsky D.J. and 1200+ authors including Sarkar S.
Autophagy 8(4): 445-544 (2012) [PMID: 22966490].
Klionsky D.J. and 1200+ authors including Sarkar S.
Autophagy 8(4): 445-544 (2012) [PMID: 22966490].
2011
[34] Complex inhibitory effects of nitric oxide on autophagy.
Sarkar S., Korolchuk V.I., Renna M., Imarisio S., Fleming A., Williams A., Garcia-Arencibia M., Rose C., Luo S., Underwood B.R., Kroemer G., O’Kane C.J. and Rubinsztein D.C.
Molecular Cell 43(1): 19-32 (2011) [PMID: 21726807].
Feature:
S-nitrosylation at the interface of autophagy and disease. Molecular Cell 43(1): 1-3 (2011) [Preview].
Sarkar S., Korolchuk V.I., Renna M., Imarisio S., Fleming A., Williams A., Garcia-Arencibia M., Rose C., Luo S., Underwood B.R., Kroemer G., O’Kane C.J. and Rubinsztein D.C.
Molecular Cell 43(1): 19-32 (2011) [PMID: 21726807].
Feature:
S-nitrosylation at the interface of autophagy and disease. Molecular Cell 43(1): 1-3 (2011) [Preview].
[33] Lysosomal positioning coordinates cellular nutrient responses.
Korolchuk, V., Saiki S., Lichtenberg M., Siddiqi F.H., Roberts E.A., Imarisio S., Jahreiss L., Sarkar S., Futter M., Menzies F.M., O’Kane C.J., Deretic V. and Rubinsztein D.C.
Nature Cell Biology 13(4): 453-460 (2011) [PMID: 21394080].
Korolchuk, V., Saiki S., Lichtenberg M., Siddiqi F.H., Roberts E.A., Imarisio S., Jahreiss L., Sarkar S., Futter M., Menzies F.M., O’Kane C.J., Deretic V. and Rubinsztein D.C.
Nature Cell Biology 13(4): 453-460 (2011) [PMID: 21394080].
[32] Role of autophagy in neurodegenerative diseases.
Sarkar S.†
Current Science 101(4): 514-519 (2011). †Corresponding author
Sarkar S.†
Current Science 101(4): 514-519 (2011). †Corresponding author
2010
[31] Laforin, the most common protein mutated in Lafora disease, regulates autophagy.
Aguado C.*, Sarkar S.*, Korolchuk V., Criado-Garcia O., Vernia S., Boya P., Sanz P., de Cordoba S.R., Knecht E. and Rubinsztein D.C.
Human Molecular Genetics 19(14): 2867-2876 (2010) [PMID: 20453062]. *Equal contribution
Aguado C.*, Sarkar S.*, Korolchuk V., Criado-Garcia O., Vernia S., Boya P., Sanz P., de Cordoba S.R., Knecht E. and Rubinsztein D.C.
Human Molecular Genetics 19(14): 2867-2876 (2010) [PMID: 20453062]. *Equal contribution
[30] Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy.
Davies J.E., Rose C., Sarkar S. and Rubinsztein D.C.
Science Translational Medicine 2(34): 34ra40 (2010) [PMID: 20519718].
Davies J.E., Rose C., Sarkar S. and Rubinsztein D.C.
Science Translational Medicine 2(34): 34ra40 (2010) [PMID: 20519718].
[29] Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in wild-type mice and Huntington’s disease mouse models.
Zheng S., Clabough E.B.D., Sarkar S., Futter M., Rubinsztein D.C. and Zeitlin S.O.
PLoS Genetics 6(2): e1000838 (2010) [PMID: 20140187].
Zheng S., Clabough E.B.D., Sarkar S., Futter M., Rubinsztein D.C. and Zeitlin S.O.
PLoS Genetics 6(2): e1000838 (2010) [PMID: 20140187].
[28] Anti-oxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease.
Underwood B.R., Imarisio S., Fleming A., Rose C., Krishna G., Heard P., Quick M., Korolchuk V.I., Renna M., Sarkar S., Garcia-Arencibia M., O’Kane C.J., Murphy M.P. and Rubinsztein D.C.
Human Molecular Genetics 19(17): 3413-3429 (2010) [PMID: 20566712].
Underwood B.R., Imarisio S., Fleming A., Rose C., Krishna G., Heard P., Quick M., Korolchuk V.I., Renna M., Sarkar S., Garcia-Arencibia M., O’Kane C.J., Murphy M.P. and Rubinsztein D.C.
Human Molecular Genetics 19(17): 3413-3429 (2010) [PMID: 20566712].
[27] Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases.
Renna M., Jimenez-Sanchez M., Sarkar S. and Rubinsztein D.C.
Journal of Biological Chemistry 285(15): 11061-11067 (2010) [PMID: 20147746].
Renna M., Jimenez-Sanchez M., Sarkar S. and Rubinsztein D.C.
Journal of Biological Chemistry 285(15): 11061-11067 (2010) [PMID: 20147746].
[26] Regulation of mammalian autophagy in physiology and pathophysiology.
Ravikumar B., Sarkar S., Davies J.E., Futter M., Garcia-Arencibia M., Green-Thompson Z.W., Jimenez-Sanchez M., Korolchuk V.I., Lichtenberg M., Luo S., Massey D.C.O., Menzeis F.M., Moreau K., Narayanan U., Renna M., Siddiqi F.H., Underwood B.R., Winslow A.R. and Rubinsztein D.C.
Physiological Reviews 90(4): 1383-1435 (2010) [PMID: 20959619].
Ravikumar B., Sarkar S., Davies J.E., Futter M., Garcia-Arencibia M., Green-Thompson Z.W., Jimenez-Sanchez M., Korolchuk V.I., Lichtenberg M., Luo S., Massey D.C.O., Menzeis F.M., Moreau K., Narayanan U., Renna M., Siddiqi F.H., Underwood B.R., Winslow A.R. and Rubinsztein D.C.
Physiological Reviews 90(4): 1383-1435 (2010) [PMID: 20959619].
[25] Impaired autophagy in Lafora disease.
Knecht E., Aguado C., Sarkar S., Korolchuk V., Criado-Garcia O., Vernia S., Boya P., Sanz P., de Cordoba S.R. and Rubinsztein D.C.
Autophagy 6(7): 991-993 (2010) [PMID: 20818165].
Knecht E., Aguado C., Sarkar S., Korolchuk V., Criado-Garcia O., Vernia S., Boya P., Sanz P., de Cordoba S.R. and Rubinsztein D.C.
Autophagy 6(7): 991-993 (2010) [PMID: 20818165].
2009
[24] Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies.
Sarkar S., Ravikumar B., Floto R.A. and Rubinsztein D.C.
Cell Death and Differentiation 16(1): 46-56 (2009) [PMID: 18636076].
Sarkar S., Ravikumar B., Floto R.A. and Rubinsztein D.C.
Cell Death and Differentiation 16(1): 46-56 (2009) [PMID: 18636076].
[23] Autophagic clearance of aggregate-prone proteins associated with neurodegeneration.
Sarkar S., Ravikumar B. and Rubinsztein D.C.
Methods in Enzymology 453C: 83-110 (2009) [PMID: 19216903].
Sarkar S., Ravikumar B. and Rubinsztein D.C.
Methods in Enzymology 453C: 83-110 (2009) [PMID: 19216903].
[22] Methodological considerations for assessing autophagy modulators: A study with calcium phosphate precipitates.
Sarkar S., Korolchuk V., Renna M., Winslow A.R. and Rubinsztein D.C.
Autophagy 5(3): 307-313 (2009) [PMID: 19182529].
Sarkar S., Korolchuk V., Renna M., Winslow A.R. and Rubinsztein D.C.
Autophagy 5(3): 307-313 (2009) [PMID: 19182529].
[21] Mammalian macroautophagy at a glance.
Ravikumar B., Futter M., Jahreiss L., Korolchuk V.I., Lichtenberg M., Luo S., Massey D.C.O., Menzeis F.M., Narayanan U., Renna M., Jimenez-Sanchez M., Sarkar S., Underwood B., Winslow A.R. and Rubinsztein D.C.
Journal of Cell Science 122(11): 1707-1711 (2009) [PMID: 19461070].
Ravikumar B., Futter M., Jahreiss L., Korolchuk V.I., Lichtenberg M., Luo S., Massey D.C.O., Menzeis F.M., Narayanan U., Renna M., Jimenez-Sanchez M., Sarkar S., Underwood B., Winslow A.R. and Rubinsztein D.C.
Journal of Cell Science 122(11): 1707-1711 (2009) [PMID: 19461070].
[20] In search of an “autophagomometer”.
Rubinsztein D.C., Cuervo A.M., Ravikumar B., Sarkar S., Korolchuk V.I., Kaushik S. and Klionsky D.J.
Autophagy 5(5): 585-589 (2009) [PMID: 19411822].
Rubinsztein D.C., Cuervo A.M., Ravikumar B., Sarkar S., Korolchuk V.I., Kaushik S. and Klionsky D.J.
Autophagy 5(5): 585-589 (2009) [PMID: 19411822].
2008
[19] Novel targets for Huntington's disease in an mTOR-independent autophagy pathway.
Williams A.*, Sarkar S.*, Cuddon P.*, Ttofi E.K., Saiki S., Siddiqi F.H., Jahreiss, L., Fleming A., Pask D., Goldsmith P., O’Kane C.J., Floto R.A. and Rubinsztein D.C.
Nature Chemical Biology 4(5): 295-305 (2008) [PMID: 18391949]. *Equal contribution
Selected Features:
A new pathway to autophagy. Nature Reviews Drug Discovery 7(6):476-477 (2008) [Research Highlight].
Calcium signalling: Compounded aggregation. Nature Signaling Gateway (May 2008) [Featured Article].
Promising new drug targets identified for Huntington’s disease. University of Cambridge (20 Mar 2008) [News].
Williams A.*, Sarkar S.*, Cuddon P.*, Ttofi E.K., Saiki S., Siddiqi F.H., Jahreiss, L., Fleming A., Pask D., Goldsmith P., O’Kane C.J., Floto R.A. and Rubinsztein D.C.
Nature Chemical Biology 4(5): 295-305 (2008) [PMID: 18391949]. *Equal contribution
Selected Features:
A new pathway to autophagy. Nature Reviews Drug Discovery 7(6):476-477 (2008) [Research Highlight].
Calcium signalling: Compounded aggregation. Nature Signaling Gateway (May 2008) [Featured Article].
Promising new drug targets identified for Huntington’s disease. University of Cambridge (20 Mar 2008) [News].
[18] A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin.
Sarkar S., Krishna G., Imarisio S., Saiki S., O'Kane C.J. and Rubinsztein D.C.
Human Molecular Genetics 17(2): 170-178 (2008) [PMID: 17921520].
Feature:
Rationale for treating Huntington’s with a sirolimus and lithium combination. Nature Clinical Practice Neurology 4(2):60 (2008) [Research Highlight].
Sarkar S., Krishna G., Imarisio S., Saiki S., O'Kane C.J. and Rubinsztein D.C.
Human Molecular Genetics 17(2): 170-178 (2008) [PMID: 17921520].
Feature:
Rationale for treating Huntington’s with a sirolimus and lithium combination. Nature Clinical Practice Neurology 4(2):60 (2008) [Research Highlight].
[17] Small molecule enhancers of autophagy for neurodegenerative disorders.
Sarkar S.† and Rubinsztein D.C.†
Molecular BioSystems 4(9): 895-901 (2008) [PMID: 18704227]. †Corresponding authors
Sarkar S.† and Rubinsztein D.C.†
Molecular BioSystems 4(9): 895-901 (2008) [PMID: 18704227]. †Corresponding authors
[16] Huntington’s disease: Degradation of mutant huntingtin by autophagy.
Sarkar S.† and Rubinsztein D.C.†
FEBS Journal 275(17): 4263-4270 (2008) [PMID: 18637946]. †Corresponding authors
Sarkar S.† and Rubinsztein D.C.†
FEBS Journal 275(17): 4263-4270 (2008) [PMID: 18637946]. †Corresponding authors
[15] Wild-type PABPN1 is anti-apoptotic and reduces toxicity of the oculopharyngeal muscular dystrophy mutation.
Davies J.E., Sarkar S. and Rubinsztein D.C.
Human Molecular Genetics 17(8): 1097-1108 (2008) [PMID: 18178579].
Davies J.E., Sarkar S. and Rubinsztein D.C.
Human Molecular Genetics 17(8): 1097-1108 (2008) [PMID: 18178579].
[14] Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease.
Ravikumar B., Imarisio S., Sarkar S., O’Kane C.J. and Rubinsztein D.C.
Journal of Cell Science 121(10): 1649-1660 (2008) [PMID: 18430781].
Ravikumar B., Imarisio S., Sarkar S., O’Kane C.J. and Rubinsztein D.C.
Journal of Cell Science 121(10): 1649-1660 (2008) [PMID: 18430781].
[13] Clearance of mutant aggregate-prone proteins by autophagy.
Ravikumar B., Sarkar S. and Rubinsztein D.C.
Methods in Molecular Biology 445: 195-211 (2008) [PMID: 18425452].
Ravikumar B., Sarkar S. and Rubinsztein D.C.
Methods in Molecular Biology 445: 195-211 (2008) [PMID: 18425452].
2007
[12] Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models.
Sarkar S.*, Perlstein E.O.*, Imarisio S., Pineau S., Cordenier A., Maglathlin R.L., Webster J.A., Lewis T.A., O’Kane C.J., Schreiber S.L. and Rubinsztein D.C. Nature Chemical Biology 3(6): 331-338 (2007) [PMID: 17486044]. *Equal contribution Selected Features: Stimulating the cell’s appetite for itself. Nature Chemical Biology 3(6):304-306 (2007) [News and Views]. Neurodegenerative disorders: An aid to digestion. Nature Reviews Drug Discovery 6(7):518 (2007) [Research Highlight]. Neurodegenerative disorders: An aid to digestion. Nature Signaling Gateway (Jul 2007), [Research Highlight]. Cells make a meal of Huntington’s disease. University of Cambridge (08 May 2007) [News]. Hope of breakthrough in treatment of brain disorder. The Scotsman (08 May 2007) [News]. Cells could eat brain disorders. Channel 4 News (07 May 2007) [Health News]. |
[11] Trehalose, a novel mTOR-independent autophagy inducer, accelerates clearance of mutant huntingtin and alpha-synuclein.
Sarkar S., Davies J.E., Huang Z., Tunnacliffe A. and Rubinsztein D.C.
Journal of Biological Chemistry 282(8): 5641-5652 (2007) [PMID: 17182613].
Sarkar S., Davies J.E., Huang Z., Tunnacliffe A. and Rubinsztein D.C.
Journal of Biological Chemistry 282(8): 5641-5652 (2007) [PMID: 17182613].
[10] Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function.
Chakrabortee S., Boschetti C., Walton L.J., Sarkar S., Rubinsztein D.C. and Tunnacliffe A.
Proceedings of the National Academy of Sciences (PNAS), USA 104(46): 18073-18078 (2007) [PMID: 17984052].
Chakrabortee S., Boschetti C., Walton L.J., Sarkar S., Rubinsztein D.C. and Tunnacliffe A.
Proceedings of the National Academy of Sciences (PNAS), USA 104(46): 18073-18078 (2007) [PMID: 17984052].
[9] Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.
Floto R.A.*, Sarkar S.*, Perlstein E.O.*, Kampmann B., Schreiber S.L. and Rubinsztein D.C.
Autophagy 3(6): 620-622 (2007) [PMID: 17786022]. *Equal contribution
Floto R.A.*, Sarkar S.*, Perlstein E.O.*, Kampmann B., Schreiber S.L. and Rubinsztein D.C.
Autophagy 3(6): 620-622 (2007) [PMID: 17786022]. *Equal contribution
[8] Role of the ubiquitin-proteasome system in Huntington’s disease and the spino-cerebellar ataxias.
Davies J.E., Sarkar S. and Rubinsztein D.C.
BMC Biochemistry 8(Suppl 1): S2 (2007) [PMID: 18047739].
Davies J.E., Sarkar S. and Rubinsztein D.C.
BMC Biochemistry 8(Suppl 1): S2 (2007) [PMID: 18047739].
2006
[7] Inositol and IP3 levels regulate autophagy – Biology and therapeutic speculations.
Sarkar S. and Rubinsztein D.C.
Autophagy 2(2): 132-134 (2006) [PMID: 16874097].
Sarkar S. and Rubinsztein D.C.
Autophagy 2(2): 132-134 (2006) [PMID: 16874097].
[6] Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharungeal muscular dystrophy.
Davies J.E., Sarkar S. and Rubinsztein D.C.
Human Molecular Genetics 15(1): 23-31 (2006) [PMID: 16311254].
Davies J.E., Sarkar S. and Rubinsztein D.C.
Human Molecular Genetics 15(1): 23-31 (2006) [PMID: 16311254].
[5] Aggregate-prone proteins are cleared from the cytosol by autophagy – therapeutic implications.
Williams A., Jahreiss L., Sarkar S., Saiki S., Menzies F.M., Ravikumar B. and Rubinsztein D.C.
Current Topics in Developmental Biology 76: 89-101 (2006) [PMID: 17118264].
Williams A., Jahreiss L., Sarkar S., Saiki S., Menzies F.M., Ravikumar B. and Rubinsztein D.C.
Current Topics in Developmental Biology 76: 89-101 (2006) [PMID: 17118264].
2005
[4] Lithium induces autophagy by inhibiting inositol monophosphatase.
Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J. and Rubinsztein D.C.
Journal of Cell Biology 170(7): 1101-1111 (2005) [PMID: 16186256].
Feature:
Lithium decreases IP3 to promote autophagy. Science Signaling 2005(304):tw349 (2005) [Editor's choice].
Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J. and Rubinsztein D.C.
Journal of Cell Biology 170(7): 1101-1111 (2005) [PMID: 16186256].
Feature:
Lithium decreases IP3 to promote autophagy. Science Signaling 2005(304):tw349 (2005) [Editor's choice].
2004
[3] Congo Red, doxycycline and HSP70 overexpression reduce aggregate formation and cell death in cell models of oculopharyngeal muscular dystrophy.
Bao Y.P., Sarkar S., Uyama E. and Rubinsztein D.C.
Journal of Medical Genetics 41(1): 47-51 (2004) [PMID: 14729833].
Bao Y.P., Sarkar S., Uyama E. and Rubinsztein D.C.
Journal of Medical Genetics 41(1): 47-51 (2004) [PMID: 14729833].
2003
[2] The roles of the ubiquitin-proteasome and autophagy-lysosome pathways in Huntington’s disease and related conditions.
Ravikumar B., Sarkar S., Berger Z. and Rubinsztein D.C.
Clinical Neuroscience Research 3(3): 141-148 (2003).
Ravikumar B., Sarkar S., Berger Z. and Rubinsztein D.C.
Clinical Neuroscience Research 3(3): 141-148 (2003).
2002
[1] Untangling the mystery of Alzheimer’s disease: Understanding molecular mechanisms for novel therapeutic approaches.
Sarkar S.†, Choudhury A. and Avinash T.N.
Resonance 7(2): 33-45 (2002). †Corresponding author
Sarkar S.†, Choudhury A. and Avinash T.N.
Resonance 7(2): 33-45 (2002). †Corresponding author